1/3x^2-16=0

Simple and best practice solution for 1/3x^2-16=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1/3x^2-16=0 equation:



1/3x^2-16=0
Domain of the equation: 3x^2!=0
x^2!=0/3
x^2!=√0
x!=0
x∈R
We multiply all the terms by the denominator
-16*3x^2+1=0
Wy multiply elements
-48x^2+1=0
a = -48; b = 0; c = +1;
Δ = b2-4ac
Δ = 02-4·(-48)·1
Δ = 192
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{192}=\sqrt{64*3}=\sqrt{64}*\sqrt{3}=8\sqrt{3}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{3}}{2*-48}=\frac{0-8\sqrt{3}}{-96} =-\frac{8\sqrt{3}}{-96} =-\frac{\sqrt{3}}{-12} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{3}}{2*-48}=\frac{0+8\sqrt{3}}{-96} =\frac{8\sqrt{3}}{-96} =\frac{\sqrt{3}}{-12} $

See similar equations:

| 9x^2−54x+88=0 | | -30+-3y=18 | | (158+4x)+(x^2+32)=180 | | -11-6=a | | 10n+20=6n | | (158+4x)+(x^2-32)=180 | | 9x2−54x+88=0 | | 180=13x+1+9x+3 | | -y/12=24 | | (158-4x)+(x^2-32)=180 | | 9+8=-17(x-2)+11=28x | | w+4/3+1/3=-1/6(w-7/2) | | (158-4x)+(x^2+32)=180 | | 102-8f=38 | | (9x-3)(5x+3)=0 | | 420=2n-1 | | 75+18z=453 | | x^2-4x+158+32-180=0 | | 1/3(t-6)-10=-3t+2 | | 2=k10 | | 3-k/1-5=2 | | X²+x-15=0 | | -3(2-a)=9 | | 17b-(-93)=926 | | 261-3n=732 | | 9000=10800/1+x | | -(2n+5)=9 | | -11w-4=7 | | 9000=10800/(1+x) | | v-7=-2 | | 13+x=103 | | -20=-5(3-b) |

Equations solver categories